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Note on fluctuating flow near a stagnation point 
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The problem of the flow near a stagnation point when the main stream outside 
the boundary layer fluctuates in magnitude but not in direction about a steady 
mean is discussed. The velocity distribution is found in the two limiting cases of 
small and large values of the frequency of the oscillation. The corresponding two 
approximate solutions give similar results in an overlapping range of frequency. 

1. Introduction 
The laminar boundary layer ire two-dimensional flow, when the velocity of the 

oncoming flow relative to the body oscillates in magnitude but not in direction, 
has been investigated by Lighthill (1954). He found that for frequencies greater 
than a certain value, the oscillations within the boundary layer are close to shear 
waves unaffected by the mean flow. For frequencies less than this value the 
oscillations are closely approximated by the sum of the parts corresponding to 
the instantaneous velocity and the acceleration of the oncoming flow. 

Froessling (see Schlichting 1955) has obtained an exact solution for the steady 
flow of an incompressible viscous liquid near a stagnation point. Ratna & 
Rajeshwari (1962) have solved the similar problem for a visco-elastic liquid by a 
KArmAn-Pohlhausen method from which the corresponding results for ordinary 
viscous fluids can be derived. In  this paper such a problem is discussed for a 
viscous liquid when the main stream outside the boundary layer fluctuates in 
magnitude but not in direction about a steady mean. The method of analysis is 
the same as that of Lighthill for the problem mentioned above. The velocity 
components in the directions of r and x ( r ,  8, z are cylindrical-polar co-ordinates) 
outside the boundary layer are taken as 

U = a,(l+eei")r and W = -2a,(1+eeiw')z, 

respectively, where a, is a constant, x = 0 is a wall, the origin is the stagnation 
point, and e and w are the amplitude and the frequency of the oscillation, respec- 
tively. Taking the result for the steady part of flow from Ratna & Rajeshwari 
(1962), the unsteady part of the flow has been calculated for small and for large 
values of w .  It is shown that the two approximate solutions overlap for 

w = 8 . 0 8 4 6 ~ ~ .  
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2. Equations of motion 
The equations of axisymmetric motion for viscous incompressible liquid in 

cylindrical-polar co-ordinates, when the velocity perpendicular to the meridian 
plane is zero, are 

(1) 

(2) 

1 - au au au 1 ap [a2u 82% 1 au u at +u-+w- = ---+v -+-+---- 

aw aw aw 
ar az par 822 ar2 r ar r2 ' 

where all symbols have their usual fluid dynamical significance. The equation of 
continuity is 

au u aw -+-+- = 0. 
ar r az (3) 

Consider a steady stream of viscous liquid impinging on a wall z = 0 and 
flowing away radially in all directions. The stagnation point is at the origin and 
the flow is in the direction of the negative z-axis. The velocity components in the 
directions of r andz are respectively U = ar and W = - 2az outside the boundary- 
layer region. This suggests the form of the velocity components within the 
boundary-layer region as 

u = rd{ f ( z ) } /dz ,  w = - 2 f ( z ) .  

The boundary conditions are 

u = O , w = O  at z = O ,  

u = u  at z = 6, (4) 

where 6 is the boundary-layer thickness. 

( 5 )  
is given by a = a,(l+eeiw"), 

where 8 is small. The velocity components in the directions of r and z outside the 
boundary-layer region are given by 

Now we consider that a oscillates about a steady mean value a, and at any time 

U = a,(l+eeiwt)r, W = - 2 a , ( l + ~ e i @ 9 2 ,  (6) 

which means that the main stream velocity is always inclined at an angle 
t a r 1 (  - 2z/r) to the wall and oscillates in magnitude only. We suppose that the 
velocity components and the pressure within the boundary-layer region are 
performing small oscillations about a steady mean and write f ( z )  and p(r ,  z )  in 
the following form: 

f(z)  = (a*v)+ [$0(7) + M r )  eiotl, 

&, 2) = Po@, 2) + V l ( Y ,  4 ei", 

(7)  

(8) 

where 7 = z/S. The boundary conditions (4) become 

= do = 0,  4; = q51 = 0 at 7 = 0,  

4; = D, 9; = D ,  4; = &' = @{ = 0, fl; = $': = #: = 0 at 7 = 1, 
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where D = (ao/v)* 6. For steady flow D = 2-5494 and $ o ( ~ )  is given by (see Ratna 
& Rajeshwari 1962) 

$ o ( ~ )  = D(1.6562r2- 1 .0832~~-  0*0314q4+ 0.350175- 0.11467'). (10) 
Here a prime denotes differentiation with respect to 7. Substituting (7), (8) in 
(1) and (2) and neglecting the terms containing square and higher orders of e, 
we get 

i S Z D 2 # ; + 2 D ~ ; # ; - 2 D ( ~ ; ~ , + ~ , # ; ) - f l :  = - (D3/pa~r)ap,(r,x)/8r, (11) 

(12) - 2iQD2+, + 4D(#;#, + $o$;) + & = - (D2/po)  8pl(r, 4/87. 

The condition of integrability of ( 11) and (12) is 

iQD2$; + 2D&& - 2D(515:4~ + $o#;) - = C, (13) 

where C is a constant of integration. The boundary conditions a t  7 = 1 from (9) 
give C = 2D3 + iQD3, and equation (13) becomes 

i S Z D 2 ( ~ ~ - D ) + 2 D ( & , ~ ; - D 2 ) - 2 D ( & ~ 1 + ~ o # ~ ) - & '  = 0. (14) 

3. Low frequency 
The solution of equation (14) in the limiting case w+O is the quasi-steady 

solution; let it be denoted by q52(7). Following Lighthill (1954) it can be written 
as 

Substituting the expression for q50 from (lo), we get 
$2(7) = M o ( 7 )  + 7$3. 

&(7) = D(2.4843~~- 2*1664q3- 0*0785q4+ 1.05037'- 0.40017'). (16) 
For general values of w we write 

$,(a) = #2(7) + +3(7)- (17) 

Substituting (17) in (14) and using the fact that g2(7) is a solution for w = 0, we 
get the equation for q53(q) as 

D2(w/ao) (#~-D)+2D#;q5;-2D(#~#,+#,#,")-q5~ = 0. (18) 

Boundary conditions on #3(7) are 

(19) 
$ 3 ~  0,  & =  0, &=-SZD3 a t  7 = 0, 

$; = 0, q5," = 0, fll= 0,  & = o at 7 = 1, 

where SZ = w/ao. Representing 5h3(7) by a seventh-degree polynomial in 7, it  can 
be written as 

#3(7) = $&D3q2(l -7)6- b[14y2( I - Y ) ~ +  77( 1 - 7)6 + (1 - 7)'- 11, (20) 
which satisfies (19). Integrating (18) from 7 = 0 to 7 = 1 and applying (19), we 

QD2d,(1)+6DJ # l ( r ) ~ ; ( 7 ) d y - 2 D 2 ~ , ( 1 ) + # , " ( 0 ) -  SZD3 = 0. (21) 

} 

get 1 

0 
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Substituting the expressions for $,(q) from (lo), #z(7) from (16) and $3(7) from 
(20) in (21), we get b = 0.033008. Hence the expression for g3(7) can be written as 

#3(7) = R(0*783472- 2.66177'+ 4 . 3 6 8 4 ~ ~ -  3.6752q6+ 1.60667'- 0.28837'). (22) 

This solution is taken only as far as the first power in B and further powers can be 
calculated if required. 

4. High frequency 
For high frequency, i.e. when R is greater than some as yet undetermined 

value, the above treatment will not give a correct picture. For this case 
equation (14) is approximated by retaining terms involving R and the derivative 
of highest order. Then equation (14) reduces to 

#; = iLRD2(qq-D). (23) 

The boundary conditions on q51(7) are 

The solution of (23) satisfying (24) is 

#l(q) = Dr-R-g[(1-i)/~2-exp{-(1+i)Dy(~R)t-ain}IY (25) 

which shows that the oscillations of the velocity components within the boundary 
layer are to a close approximation 'shear waves' unaffected by the mean flow. 

5. Discussion 

the case of high frequency it is 
The expression for the skin friction at the wall is given by p(8u/8x) z = 0. In  

(26) 

The amplitude of its fluctuation increases with LR and its phase is ahead of the 
fluctuation of the main stream by 45". In  the case of low frequency the skin 
friction a t  the waIl is 

p(a,v)) (r/D2) [3*3124D +eD2(+LR)g (1 + i) eid]. 

p(a,v)t (r/D2) [3.3124D+s(4.9686D+il.5668R) eid]. (27) 

It has a phase lead of tan-l (R/8.0846) over the oscillation of the main stream. 
This phase lead increases with B and becomes 45" for Q = 8.0846 which is its 
phase lead in the case of high frequency. For this value of Cl the amplitude of its 
oscillation in both the cases are approximately the same. Hence this is the value 
of R at which transition from one type of flow to the other occurs. Denoting the 
real and imaginary parts of u1 by uT and ug respectively, the graphs of uT/a,r and 
u,/aor have been plotted against 7 for LR = 8.0846 in figure 1. The continuous lines 
indicate the values taken from the high-frequency solution and the broken lines 
indicate that from the low-frequency solution. Similar graphs for the real and 
imaginary parts of w1 have been drawn in figure 2. Both the graphs reveal that 
the unsteady part of the radial as well as the axial component of the velocity 
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7' 

- - -, low frequency. 
FIUURE 1. Approximations to u,/a,r and ui/aor as functions of 7: -, high frequency; 

7+ 

- - -, low frequency. 
FIGURE 2. Approximations to w,/aa6 and wi/a,6 as functions of 7: -, high frequency; 
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within the boundary-layer region from the two approximate solutions almost 
overlap at this frequency of oscillation of the main flow. 

I thank Prof. B. R. Seth for his constant encouragement. 
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